Selected Publications

Siebald C, Vincent PFY, Bottom RT, Sun S, Reijntjes DOJ, Manca M, Glowatzki E, Müller U. Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. Proc. Nat. Acad. Sci 120, e2217033120.  
 
Jung, J., Müller, U. Mechaonelectrical transduction-related genetic forms of hearing loss. Current opinion in physiology. 2023, in press. 
 
Qiu X, Liang X, Llongueras JP, Cunningham C, Müller U. The tetraspan LHFPL5 is critical to establish maximal force-sensitivity of the mechanotransduction channel of cochlear hair cells. Cell Reports 2023;42:112245  
 
Müller U. Mechano-sensation and joint deformities. Science 2023;379:137-138. 
 
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside induced hearing loss. Dev. Cell 2022;57:2204-2220.  
 
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022;110:3667-3687. 
 
Fabra-Beser J, Alves Medeiros de Araujo J, Marques-Coelho D, Goff LA, Costa MR, Müller U, Gils-Sanz C. Differential expression levels of Sox9 in early neocortical radial glial cells regulate the decision between stem cell maintenance and differentiation. J. Neuroscience 2021;41:6969-6986  
 
Sun, S, Siebald, C, Müller U. Subtype maturation of spiral ganglion neurons. Current Opinion Otol. Head and Neck Surgery. 2021;29:391-399. 
 
Alves Medeiros de Aroujo J, Barao S, Mateos-White I, Espinosa A, Costa MR, Gil-Sanz C, Müller U. ZBTB20 is crucial for the specification of a subset of callosal projection neurons and astrocytes in the mammalian neocortex. Development 2021;148:dev196642.  
 
Liang X, Qiu X, Dionne G, Cunningham CL, Pucak ML, Peng G, Kim YH, Lauer A, Shapiro L, Müller U. CIB2 and CIB3 are auxiliary subunits of the mechanotransduction channel of hair cells. Neuron 2021; 109:2131-2149. 
 
Athey TL, Teneggi J, Vogelstein, JT, Tward, D, Müller, U, Miller, MI. Fitting splines to axonal arbors reveals relationship between branch order and geometry (2021).Frontiers Neuroinformatics 2021;15:704627. 
 
Cunningham CL, Qiu X, Wu Z, Zhao B, Peng G, Kim YH, Lauer A, Müller U. (2020) TMIE defines pore and gating properties of the mechanotransduction channel of mammalian cochlear hair cells. Neuron 107, 126-143. 
 
Cunningham CL, Müller U. Molecular structure of the hair cell mechanoelectrical transduction complex. Cold Spring Harb Persp Med 2019;9. 
 
Dionne G, Qiu X, Rapp M, Liang X, Zhao B, Peng G, Katsamba PS, Ahlsen G, Rubinstein R, Potter CS, Carragher B, Honig B, Müller U,  and Shapiro L. (2018) Mechanotranduction by PCDH15 relies on a novel cis-dimeric architecture. Neuron 99, 480-492. 
 
Sun S, Babola T, Pregernig G, So KS, Nguyen M, Su SM, Palermo AT, Bergles DE, Burns JC, and Müller U. (2018). Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell 174, 1747-1263. 
 
Cunningham CL, Wu Z, Jafari A, Zhao B, Schrode K, Harkins-Perry S, Lauer A, Müller U. (2017). The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells. Elife. 6. pii: e24318. 
 
Wu Z, Grillet N, Zhao B, Cunningham C, Harkins-Perry S, Coste B, Ranade S, Zebarjadi N, Beurg M, Fettiplace R, Patapoutian A, and Müller U. (2017). Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat Neurosci. 20, 24-33. 
 
Zhao B, Wu Z,  and Müller U. (2016). Murine Fam65b forms ring-like structures at the base of stereocilia critical for mechanosensory hair cell function. Elife, 5. 
 
Martinez-Garay I, Gil-Sanz C, Franco SJ, Espinosa A, Molnár Z, and Müller U. (2016). Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex. Development143, 2121-2134. 
 
Zhao B, Müller U. The elusive mechanotransduction machinery of hair cells. Curr Opin Neurobiol. 2015;34:173-179. 
 
Müller, U., and Gillespie, P. (2015). New treatment options for hearing loss. Nat. Rev. Drug Discovery 14, 346-365. 
 
Gil-Sanz, C. and Müller, U. (2015). A new chapter in the life of Cajal's short-axon neurons: separation of interneuron siblings after birth. Neuron 87, 909-911. 
 
Xiong, W., Wagner, T., Yan, L., Grillet, N., and Müller, U. (2014). Injectoporation: An efficient gene delivery method for the annotation of gene function in mechanosensory hair cells. Nature Protocols 9, 2438-2494. 
 
Gil-Sanz, C., Espinosa A., Fregoso S.P., Bluske, K.K., Cunningham, C.L., Martinez-Garay, I., Zeng, H., Franco,S.J., and Müller, U. (2014). Linege tracing using Cux2-Cre and Cux2-CreERT2 mice. Neuron 86,1091-1099. 
 
Zhao, B., Wu, Z., Grillet, N., Yan, L., Xiong. W., Harkins-Perry, S., and Müller, U. (2014). TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 84, 954-967. 
 
Marin O, Müller U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr Opin Neurobiol. 2014;26C:132-141.  
 
Gil-Sanz, C., Franco, S.J., Martinez-Garay, I., Espinosa, A., Harkins-Perry, S., and Müller, U. (2013). Cajal-Retzius cells instruct neuronal migration by coincidence signaling between secreted and contact-dependent guidance cues. Neuron 79, 461-477. 
 
Xiong, W., Grillet, N., Elledge, H., Wagner, T.F.J., Zhao, B, Johnson, K.R., Kazmierczak, P., and Müller, U. (2012). TMHS is an integral component of the mechanotransduction machienry of cochlear hair cells. Cell 151, 1283-1295. 
 
Franco S.J., and Müller, U. (2012). Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77, 19-34. 
 
Franco, S.J., Gil-Sanz, C. Martinez-Garay, I., Espinosa, A., Harkins-Perry, S.R., Ramos, C., and Müller, U. (2012). Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337, 746-749. 
 
Kazmierczak P, Müller U. Sensing Sound: Molecules that orchestrate mechanotransduction by hair cells. Trends in Neuroscience. 2011;35:220-229. (Cover Article). 
 
Franco, S.J., Martinez-Garay, I., Gil-Sanz, C., Harkins-Perry, S.R., and Müller U. (2011). Reelin signaling regulates cadherin function through Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69, 482-497. 
 
Schwander M, Kachar B, and Müller U. Review Series: The cell biology of hearing. J Cell Biol. 2010;190:9-20. 
 
Gillespie, P., and Müller, U. (2009). Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139, 33-44. 
 
Grillet, N., Kazmierczak, P., Xiong, W., Schwander, M., Reynolds, A., Sakaguchi, H., Tokita, J., Kachar, B., and Müller, U. (2009). The mechanotransduction machinery of hair cells. Sci. Signal. 2, pt5. 
 
Grillet, N., Xiong, W., Reynolds, A., Kazmierczak, P., Sato, T., Lillo, C., Dumont, R.A., Hintermann, E., Sczaniecka, A., Schwander, M., Williams, D., Kachar, B., Gillespie, P.G., and Müller, U. (2009). Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62, 345-387. 
 
Müller U. Cadherins and Mechanotransduction by Hair Cells. Current Opin Cell Biol. 2008;20:557-566. 
 
Kazmierczak, P., Sakaguchi, H., Tokita, J., Wilson-Kubalek, E.M., Milligan, R.A., Müller, U.*, and Kachar, B.* (2007). Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449, 87-91.
 
Schwander, M., Sczaniecka, A., Grillet, N., Bailey, J.S., Avenarius, M., Najmabadi, H., Steffy, B.M., Federe, G.C., Lagler, E.A., Banan, R., Hice, R., Grabowski, L., Keithley, E.M., Ryan, A.F., Housley, G.D., Wiltshire, T., Smith, R.J.H., Tarantino, L.M., and Müller, U. (2007). A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J. Neurosci. 27, 2163-2175. 
 
Siemens, J., Lillo, C., Dumont, R.A., Williams, D., Gillespie, P.G., and Müller. U. (2004). CDH23 is a component of the tip link in hair cell stereocilia. Nature 428, 950-955. 
  
Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittney, J.C., and Müller, U. (2001). β1 class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367-379.